Exercise 4

Prove that if $z_{1} z_{2} z_{3}=0$, then at least one of the three factors is zero.
Suggestion: Write $\left(z_{1} z_{2}\right) z_{3}=0$ and use a similar result (Sec. 3) involving two factors.

Solution

Suppose that

$$
z_{1} z_{2} z_{3}=0
$$

Use the associative law for multiplication.

$$
\left(z_{1} z_{2}\right) z_{3}=0
$$

Use the fact that if a product of two complex numbers is zero, then so is at least one of the factors.

$$
z_{1} z_{2}=0 \quad \text { or } \quad z_{3}=0
$$

Use this fact once more.

$$
z_{1}=0 \quad \text { or } \quad z_{2}=0 \quad \text { or } \quad z_{3}=0
$$

Therefore, if $z_{1} z_{2} z_{3}=0$, then at least one of the three factors is zero.

